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ACTIONIm

OU17/92 ~om GoffJ: Have a polished version (with peer review) of the file dump routine
ready for tie MODIS Science Team Meeting. (The roud.ne has been reviewed by the SDST
sotiare review mmmittee, and their changes have been incorporated.) STATUS: Open. Due
date 04/01/92.

02/21/92 Lloyd Carpenter and Team]: Identi@ a list of risks associated with potig Team
Members’ algorithms to the PGS. Prepare these for discussion at the Science Team Meeting.
(An updated version of the list is included in the handout.) STATUS: Open. Due date
04/01/92.

03/20/92 Lloyd Carpenter]: Gather the MODIS Data Product Attributes information, and
write a cover letter to Team Members for updating the information, and discussion at the Team
Meeting. (Completed) STATUS: Own. Due date 03/27/92.

04/03/92 ~eam]: Provide comments and questions (to Jim Ormsby and Al Fleig) on
gmlocation and registration (for discussion with the land team). STATUS: Open. he date
04/10/92.

04/03/92 ~eaxn]: Provide comments to Jim Ormsby on the MODIS-N SDST Glossary of
Definitions (handed out at the 02/28/92 meeting). STATUS: Open. he date 04/10/92.
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Introduction

The MODIS Airborne Simulator (MAS) Level-1 pr~ssing system was designed and
implemented by the MODIS Science Data Support Team at GSFC during the last half of 1991,
and processed the frost MAS flight data in November 1991. The purpose of the processing
system is to ingest MAS Level-O aircraft sensor, engineering and navigation data, and produce
dibrated, geolocated radiances in a portable format. This document briefly describes

■ the MAS instrument specifications,
m the calibration and geolocation procedures for the MAS,
m the processing system operation and output products,
m cument data processing status and availability.

MAS instrument description

Platform
Ground speed
Altitude
Total field of view
Swath width
Instantaneous field of view
Pixel spatial resolution
Pixels per scan line
Scan rate
Data channels
Bits per channel
Data rate
Spectral channels
Visible calibration
Infrared calibration

NASA ER-2 aircraft
206 meters per second (nominal)
18 kilometers (nominal)
85.92 degres
33.52 kilometers (at 18 kilometers altitude)
2.5 rnilliradians
45 meters (at 18 kilometers altitude)
716
6.25 scan lines per second
12
8 (configured to have 4 channels@ 10 bits, 7 ch~els @ 8 bits)
232.2 Megabytes/hour (Ames Level-O intermediate format)
50 (subset of 12 selected for flight)
Integrating sphere on the ground - none onboard
Two temperature controlled black bodies on board

MAS Visible/Near-Infrared Calibration

The MAS does not have an onboard visible/near-infrared (VIS/NIR) calibration capability. An
integrating sphere is used on the ground before and after flight missions to generate calibration
data for the VIS/NIR channels. A linear calibration of the form

Radiance = Slope x Count + Intercept

is used to compute VIS/NIR radiances. It is currently assumed that this dibration is not time
dependent and does not change during flight. However recent instrument charactetition at
Ames Research Center has revealed that VIS/MR channel sensitivity may decrease as the
MAS instrument cools during ascent to cruise altitude. Efforts are underway to characterize
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this effect, and an updated calibration method which corrmts for the sensitivity changes with
temperature will be implemented. More details on the MAS VIS/NIR calibration scheme are
given in Jedlovw et. al. (l).

MAS Infrared Calibration

Calibration data for the MAS infrared (IR) channels is obtained during flight from two
temperature controlled blackbody sources. These blackbodies are maintained at temperatures
of approximately 238 K (-35 C) and 273 K (O C) respectively. These are viewed during every
mirror scan. The calibration algorithm for these channels involves

■ computing equivalent Planck radiances at the blackbody temperatures,
■ computing the calibration slope and intercept by the relationships

Slope = Radiance(BB2) - Radiance(BB I\
Count(BB2) - Count(BBl)

Intercept = Radiance(BB 1) x Count(BB2) - Radiance(BB2) x Count@B 1)
Count(BB2) - Count(BBl)

where

Radiance(BBl), Radiance(BB2) are the equivalent P1anck radiances for the cool (238
K) and warm (273 K) blackbodies respectively,

Count(BB 1), Count(BB2) are the digital instrument counts for the cool (238 K) and
warm (273 K) blackbodies respectively,

m computing the equivalent sensor radiance for each pixel by the relationship

Radiance = Slope x Count + Intercept.

This procedure is performed for every IR channel on every scanline. No averaging of MAS
blackbody data is done. More details on the MAS IR calibration scheme are given in Jedlovec
et. al. (l).

MAS Geolocation

Geolocation data for the MAS is recorded continuously during flight by the ER-2 Inertial
Navigation System (INS). The important parameters are time, latitude, longitude, heading and
altitude. The INS updates these values every 5 seconds.
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The gmlocation algorithm is only applied to portions of a flight where the aircraft flew a
straight and level line. Straight line flight tracks are identified by manual inspection of the

change in aircraft heading with time. Linear regressions for aircraft latitude, longitude,

heading and altitude versus time ae computed for the straight line flight tracks.

To geolocate a given MAS straight line flight track, the MAS start time and scanline number
at the beginning of the flight track are determined. These are used as a reference for the rest

of the flight track, since MAS times are truncated to whole seconds. The sca.nline number and
scan rate are used to determine the time elapsed to subsequent scanlines in the flight track.
Once the time for a given scanline is computed, the linear regression relationships are used to
compute aircraft latitude, longitude, heading and altitude at that time. Latitudes and longitudes
are then computed for every 10th pixel on that scanline (pixels 1, 10, 20, 30, . . . . . 690, 700,
710, 716). Solar zenith and azimuth angles, and aircraft scan and azimuth angles are also
computed for every 10th pixel. Every scanline in a straight line flight track is gmlocated in
this way. Scanlines which are not included in straight line flight tracks have no geolocation
data computed. However it should be noted that the INS data is still available during
sections. More details on the MAS geolocation scheme are given in Jedlov& et. al. (1).

MAS Level- 1 Data Processing Svstem

these

The MAS Level- 1 Data Processing System was designed at GSFC on DEC VAX/VMS and
Silicon Graphics Iris systems in FORTRAN77, and currently runs on either system. The
present processing configuration uses a VAX system as a MAS Level-O data staging area, and
a Silicon Graphics Iris as a processing platform.

The current sequence of processing steps is:

(1) Read MAS Level-O tapes onto VAX,
(2) Chuk Level-O data for anomalies or problems,
(3) Determine flight track time limits from INS data,
(4) Compute navigation regressions from time limit data,
(5) Compute calibration data,
(6) Create calibrated, geolocated data set for each flight line,
(6) Move Level- 1 data to FTP site,
(7) Writing Uvel- 1 data summary for FTP site.

The data is currently distributed by File Transfer Protocol (FTP) over Internet. A facility for
distributing data on Exabyte 8mm tapes will exist in the near future.

MAS Level- 1B data format

During the design of the MAS Level-1 processing system, it
problems associated with dataset portability and usability could

was dwided that many of the
be solved by creating the MAS
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Level- lB datasets in a standard, portable format. After some investigation, the Network
Common Data Form (NetCDF) interface (2) was selected as the means for reading and writing
tie MAS Level- lB data files. NetCDF was developed by the Unidata Program Center at the
University Corporation for Atmospheric Research (UCAR). The purpose of NetCDF is to
allow the user to create, access, and share scientific data in a form that is self-describing and
network-transparent. “Self-describing” means that a fde includes information deftig the data
it contains. “Network-transpaent” means that a file is represented in a form that can be
accessed by computers with different ways of storing integers, characters, and floating-point
numbers.

NetCDF data files are accessed through C or FORTRAN interfaces which are provided by
UCAR. The interfaces have been successfully tested by UCAR on the following platforms:
= Sun 3, SPARCstation (SunOS)
■ DEC VAX (VMS , Ultrix)
■ DECstation (Ultrix)
~ IBM RISC System 6000 (AIX)
~ Cray YMP (UNICOS)
= IBM PS/2 (MSDOS , 0S/2)
The NetCDF interface library source code is available from UCAR by anonymous FTP.
Instructions on how to obtain the software are appended to this document (Appendix 1).

MAS Level- 1B data contents

The product generated by the MAS Level-1 processing system is defined to be calibrated,
geolocated radiances. When designing the MAS Level-lB dataset, a prime concern was that
all Level-O engin~ring and ancillary input data be maintained in the output data set.

Each individual Level- lB dataset contains calibrated, geolocated radiances for all MAS
channels for one straight line flight track, or flight line. Each Level- lB flight line is contained
within one NetCDF file. A description of a Level- lB flight line file is appended to this
document (Appendix 2).

MAS Level- 1B data availability

The MAS Level- 1B data is currently distributed at GSFC by anonymous FTP via Internet.
Details on how this may be done ae appended to this document (Appendix 3). Since many of
the typical MAS flight line files are tens of megabytes in size, FTP transfers to remote sites
can be slow. For this reason, a facility to distribute MAS data on Exabyte 8mm tapes is under
development. Plans are also underway to develop an on-line catalog system for the MAS data.
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MAS data urocessinz status

The current inventory of MAS Level-O data at GSFC includes 1 test flight, 1 fe~ flight, 11
science flights (FIRE) and 3 calibration runs (FIRE). The next major MAS mission will be
the ASTEX deployment in June 1992. The following table lists the MAS data processed so far
at GSFC, as of 9 April 1992.

Flight Area covered Level-O data Processing INS offset
Date durinz flight rweived comDleted fixed

10/31/91
11/12/91
11/14/91
11/18/91
11/21/91
11/22/9 1
11/24/9 1
11/25/91
11/26/91
12/03/91
12/04/91
12/05/91
12/07/91

Ames test flight CA/NV
Ferry flight CA to TX
Coffeyville KS
Coffeyville KS
Coffeyville KS
Coffeyville KS
Gulf coast TX/LA
Coffeyville KS
Coffeyville KS
Gulf coast TX/LA
Gulf coast TX/LA
Coffeyville KS
Coffeyville KS

yes 3/3 tracks yes
yes (subset) 1/1 tracks no
yes 16/16 tracks no
yes 14/14 tracks yes
yes
yes
yes
yes
yes
yes
yes
yes 29/29 tracks no
yes

11/16/91 Ground visible calibration yes 10481 scanlines (no navigation)
11/20/9 1 Ground visible calibration yes 6078 scanlines (no navigation)
11/23/91 Ground visible calibration yes 10281 scanlines (no navigation)

Appendices 4, 5 and 6 show some of the summary data generated for the MAS FIRE flight on
18 November 1991.

References

(1) Improved Capabilities of the Multispectral Atmospheric Mapping Sensor (MAMS),
January 1989, G.J. Jedlovec et. al., NASA TM 100352, Marshall Space Flight Center.

(2) NetCDF Users Guide, An Interface for Data Access, Version 2.0, October 1991,
Unidata Program Center, University Corporation for Atmospheric Research.
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ADmndix 1

Instructions for obtaininu the netCDF librarv source code and documentation

The following sequence of commands and command output demonstrates how
to retrieve the netCDF library source code and documentation from UCAR
via anonymous FTP. The computer system used was a Silicon Graphics Iris
with the Irix 3.3.2 operating system.

% ftp unidata.ucar.edu
Connected to unidata.ucar.edu.
220 groucho FTP server (SunOS 4.1) ready.
Name (unidata.ucar.edu:gumley) : anonymous
331 Guest login ok, send ident as password.

Password:
23(JGuest login ok, access restrictions apply.

ftp> cd pub
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get netcdf-2.02.tar.Z
local: netcdf-2.02.tar.Z remote: netcdf-2.02.tar.Z
200 PORT command successful.
150 Binary data connection for netcdf-2.02.tar.Z (128.183.252.9,1288) (830751
bytes ).
226 Binary Transfer complete.
830751 bytes received in 100.72 seconds (8.05 Kbytes/s)
ftp> quit
221 Goodbye.
% uncompress netcdf-2.02.tar.Z
% tar xvof netcdf-2.02.tar

This netCDF version (2.02) was downloaded on 11 March 1992.
Installation questions or problems should be addressed to Russ Rew at UCAR
(russ@unidata.ucar.edu) .
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Structure of a ~S Level-lB NetCDF fliaht track file

The following information summarizes the variables in a NAS flight track
file. All NAS flight track files have this same format.

dimensions:
This section defines the dimensions of the variables contained in the data
set.

Time = UNLIMITED ; // (2601 currently)
This dimension is the ‘length’ dimension of the data set. It is
extendable in the sense that extra data can be added at the end of the
data set. Physically this dimension corresponds to elapsed time,
however it also corresponds to the incrementing of the scan line
counter.

N~erOfChannels = 12 ;
This is the number of channels on the MAS.

NumberOfPixels = 716 ;
This is the number of pixels across a MAS scan.

HeaderLength = 1840 ;
This is the length of the ASCII data set header. This is composed
of blocks of 80 characters, which contain no carriage return, line feed

or similar record separators. Currently the header contains one line
of descriptive text thst is entered by the person who processed the
data, followed by 22 lines which describe the MS instrument
configuration as used in processing. This text is self-documenting.

AnchorIndexSize = 73 ;
This is the number of geolocation anchor points per scan line.
Each ~S scan line has geolocation data for every 10th pixel (to
save space) . The geolocation data is defined for pixel numbers
1, 10, 20, 30, 40, ......680, 690, 700, 710 and 716
which makes a total of 73 geolocation anchor points.
It should be noted that pixels 1 to 358 are on the starboard (right)
side of the aircraft, while pixels 359 to 716 are on the port (left)
side of the aircraft.

variables:
This section defines the type and size of the variables in the output data
set.
The type definitions are from the C language, however the epivalent
FORTRAN types are
char = CHARACTER,
short = INTEGER*2,
long = INTEGER*4,
float = REAL*4.
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char DataSetHeader(HeaderLength) ;
ASCII header text.
This indicates which spectral bands were selected, which
channels had 8 or 10 bit data, which channels were calibrated
using the MAS blackbodies (IR channels), and slopes/intercepts
for the visible/near-IR channels.

short AnchorPtIndex(AnchorIndexSize) ;
Pixel numbers for which geolocation information is defined.

short DataFrameStatus (Time) ;
(Level-O MAS engineering data)
Zero indicates good data.

long ScanLineCounter(Time) ;
(Level-O MAS engineering data)
Scan line count, increments by 1 for every scan line.

long ThumbWheelSwitches (Time) ;
(Level-O MAS engineering data)
Data system thumbwheel switch settings.

short ScanRate(Time) ;
(Level-O MAS engineering data)
Scan rate in scans per second (x 10, nearest integer).

long GMTime(Time) ;
(Level-O MAS engineering data)
Greenwich Mean Time (HHMMSSS).

short S-BendIndicator(Time) ;
(Level-O MAS engineering data)
S-bend indicator : O=no S-bend, l=s-bend.

short AircraftRollCount(Time) ;
(Level-O MAS engineering data)
Aircraft roll count (signed integer, positive is right),
0.03 degrees per count.

long Year&DayOfYear(Time) ;
Year, month, day (YYYYMMDD).

short BlkBdylTemperature(Time, N-erOfChannels) ;
(Level-O MAS engineering data)
Black Body 1 (cold) thermal reference temperature
(degrees C x 100)

short BlkBdy2Temperature(Time, NumberOfChannels) ;
(Level-O MAS engineering data)
Black Body 2 (hot) thermal reference temperature
(degrees C x 100)

short AmplifierGain(Time, NumberOfChannels) ;
(Level-O MAS engineering data)
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Instrument Gain (x 1000)

short BlkBdylcounts (Ttie~ NumberOfChannels) ;
(Level-O XAS engineering data)
Black Body 1 (cold) radiance count

short BlkBdy2Counts(Time, NtierOfChannels) ;
(Level-O ~S engineering data)
Black Body 2 (hot) radiance count

float CalibrationSlope(Time, NumberOfChannels) ;
Count to radiance calibration slope.
Radiance = (count*slope + intercept)/gain (visible/near-IR channels),
Radiance = count*slope + intercept (IR channels).
Radiance units are:
milliwatts per square centimeter per steradian per micron
for visible/near-IR channels (calibrated by integrating sphere),
milliwatts per square centimeter per steradian per wavenumber
for IR channels (calibrated using MAS blackbodies).

float CalihrationIntercept(Time, NumberOfChannels) ;
Count to radiance calibration intercept.
Units are the same as the calibration slope.

float PixelLatitude(Time, AnchorIndexSize) ;
Latitudes for pixels at geolocation anchor points.
Latitude ranges from -90 degrees at the South Pole to
+90 degrees at the North Pole.

float PixelLongitude(Time, AnchorIndexSize) ;
Longitudes for pixels at geolocation anchor points.
Longitude is zero at the Greenwich Meridian, and ranges
from -180 degrees (West) to +180 degrees (East).

float SensorZenithAngle(Time, AnchorIndexSize) ;
~S sensor zenith angle for pixels at geolocation anchor points.
Defined as the zenith angle (degrees) of a vector from
the sensor to the pixel (nadir sensor zenith angle = O).

float SensorAzimuthAngle( Time, AnchorIndexSize) ;
MAS sensor azimuth angle for pixels at geolocation anchor points.
Defined as the azimuth angle (degrees) clockwise from
North of a vector from the pixel to the sensor.

float SolarZenithAngle(Time, AnchorIndexSize) ;
Solar zenith angle for pixels at geolocation anchor points.
Defined as the zenith angle (degrees) of a vector from
the pixel to the Sun.

float SolarAztiuthAngle(Time, AnchorIndexSize) ;
Solar azimuth angle for pixels at geolocation anchor points.
Defined as the azimuth angle (degrees) clockwise from
North of a vector from the pixel to the Sun.
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float AircraftLatitude (The) ;

Aircraft subpoint latitude (degrees, derived from INS data).

float AircraftLongitude(Tfie) ;
Aircraft subpoint longitude (degrees, derived from INS data).

float AircraftHeading(Time) ;
Aircraft heading (degrees, derived from INS data).

float AircraftAltitude(Ttie) ;
Aircraft altitude (meters, derived from INS data).

float AircraftPitch(The) ;
Aircraft pitch angle (degrees, derived from INS data).

short CalibratedData(Time, NumberOfChannels, NumberOfPixels) ;
Calibrated MAS radiances for all channels and all pixels
(x 100, nearest integer).
Radiance units are:
milliwatts per square centimeter per steradian per micron
for visible/near-IR channels (calibrated by integrating sphere),
milliwatts per square meter per steradian per wavenumber
for IR channels (calibrated using MAS blackbodies).

u
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ADmndix 3

Accessina the ~S anonwous FTP site

m anonymous FTP account has been set up to enable users of MAS data
to become familiar with the structure of -S Level-lB datasets, and to
provide a limited distribution mechanism for MAS Level-lB data.
Questions should be directed to:

Liam E. Gumley (RDC 301-982-3748 gumley@ltp.gsfc.nasa.gov) , or
Thomas E. Goff (RDC 301-982-3704 teg~ltp.gsfc.nasa.gov) .

Connecting to the anonvmous FTP site

The files in the account have been set up specifically for Silicon Graphics
Iris users. It is therefore advisable to use your own Iris as a base for
retrieving files. However, you can still retrieve data using any computer
with FTP. To connect to the host, type

ftp ltpiris2.gsfc.nasa.gov

(or if that doesn’t work)

ftp 128.183.252.9

For a username, enter

anonymous

and for a password, enter your Internet ID, e.g.

hoges@barbie.gsfc.nasa.gov

You should then change to the MAS directory by typing

cd pub/MAS

Gettinu files from the anonvmous FT.Parea

Files in the area are either ASCII or BINARY. In order to transfer them
correctly to your own machine, you must tell your FTP program what type
of file you are going to fetch. For example, to get the BINARY file
shrimp.dat, you would type

binary
get shrimp.dat

Similarly, to get the ASCII file downunder.dot, you would type

ascii
get downunder.doc
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Please ensure you use the correct transfer mode to avoid possible
file corruption. Note that MAS Level-lB data files (with .cdf extension)
are always in BINARY form.

Directories and files in the anonvmous FTP area

The first file you will see is 00readme.doc - you are now reading it.

There are several directories present.

Directory util contains source code, executable programs, and netCDF
libraries for use on the Iris. The files in this directory are

Size Name Description
---------- ----- ----- ------- --------------------------------------- ------- -----

58172 fdump (BIN) file dump program (Iris only)
18737 fdump.c (ASC) file dump C source code
94376 libnetcdf.a (BIN) netCDF v2.02 library (Iris only)

424176 masdump (BIN) MAS file dump program (Iris Only)

9251 masdump.f (ASC) MAS file dump FORTRAN source code
151388 ncdump (BIN) netCDF file dump program (Iris Only)

1532 netcdf.doc (ASC) how to get netCDF source via FTP
10162 netcdf.h (ASC) netCDF v2.02 C header file
5050 netcdf.inc (ASC) netCDF v2.02 FORTRAN include file

132444 netcdf2pci (BIN) netCDF to PCI program (Iris Only)

5922 netcdf2pci10.c (ASC) netCDF to PCI C source code
134156 subset (BIN) netCDF image subset program (Iris only)
11659 subset31.c (ASC) netCDF image subset C source

---------- ----- ----- ------------------------------------------------ ------- ---

Several other directories will be present, each of which contains MAS Level-lB
flight lines. The syntax of the directory names will be something like

12nov91

which represents the day, month and year of the flight in question. Each
directory will contain files from just one flight. Each file will have a name
1ike

12nov91-01.cdf

where the ‘-01’ represents the flight line number. These files are typically
large (many megabytes) and are BINARY in form. They may take a significant
period of time to transfer with FTP. Included in each of these directories
will also be a file named something like

12nov91.doc

which is an ASCII text file containing a brief summary of the flight. Also,
a file named something like

12nov91.ins

will be present, which is a BINARY file containing the ER-2 Inertial
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Navigation System (INS) data for the flight. These files have 150 bytes
per line, and are ASCII text (but use BINARY transfer for FTP).
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Aur)endix 4

MAS Fliaht Summarv

Date : 18-Nov-1991

Takeoff : 1920Z

Landing : 0120Z

Airfield : Ellington AFB, Houston TX
Aircraft : ER-2 709

Destination : Coffeyville KS
Purpose : FIRE deployment (cirrus cloud study)

Scanlines : 68973

Channels : 12 ( 2- 8 @ 8 bits, 9 - 12 @ 10 bits, 1 was bit bucket )

IFOV : 2.5 milliradians

US clock : Internal

INS clock : Internal
Clock offset: INS - MAS = 65.06 seconds CORRECTED

Total of 14 straight line flight tracks

Number Start End (Times in decimal hours)

Time Time

01
02
03
04
05
06
07
08
09
10
11
12
13
14

20.551
20.614
20.942
21.028
21.168
21.404
21.639
21.860
22.061
22.275
22.522
22.704
22.954
23.185

20.586
20.860
21.018
21.112
21.340
21.582
21.806
22.043
22.236
22.475
22.650
22.892
23.124
23.351
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ADmndix 5

MAS Level-lB fliaht line surmnary

Date
Start time
End time
Nominal heading
Nominal altitude
Number of scan lines
Start, end scan line numbers
Nominal BB1,BB2 temperatures
First valid navigated record
Nadir start lat,lon
Top left lat,lon
Top left solar zenrazm
Last valid navigated record
Nadir end lat,lon
Bottom right lat,lon
Bottom right solar zen,azm

18-Nov-1991
221639.00 hours
222818.00 hours

62 degrees
19903 meters

4351
68691 73046
-37.43 c, -0.72 C

.
L

35.964, -96.697 degrees
35.819, -96.597 degrees
79.865, 237.111 degrees
4351
36.585, -95.243 degrees
36.737, -95.333 degrees
83.214, 239.730 degrees
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ER-2 fliaht track for MAS 18 November 1991 FIRE mission
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1 Introduction

This is the fist draft version of the coding recommendations for the MODIS Science T-.
The current schedule ds for the next update in January 1993. The B version is scheduled
for July 1993. Versions 1 and 2 are schduled for July of 1994 and 1995 respectively.
Corrections and suggested changes are welcome at any time. Commented examples willbe
included in the next update to these recommendations.

1.1 Objective

The objective of these recommendations is to facilitate the porting, integration, testing,
documentation, and maintenance of de for the generation of MODIS science data products
on an operational basis. These recommendations are designed to assist the MODIS Science
Team Members in preparing their code for this process.

1.2 scope

The intent of this document is not to tell you how to write your algorithms, but to provide
r~ommen&tions for writing code meant to be ported to the EOS Product Generation System
(PGS) by the SDST.

1.3 Languages/Operating System

All MODIS science data processing code to be ported to the MODIS Team Mder
Computing Factity (TLCF) and integrated into the control shell with other code will be
written in either Standard Fortran or Standard C programming language, without extensions.
The PGS and the MODIS ~CF are planned to mnform to the Portable Operating System
Interface for ~ (POSIX) and the Government Open Systems Intercomections Profde
(GOSIP).
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1.4 Code Checkers

We are looking into the use of de checkers, such as QA Fortran, Fortran Lint and FI’N
Check as a fist step in the porting process. We recommend the use of code chwkers during
tie development to identify problems at an early stage.

1.5 Sofiware Deliverables

Software packages delivered to the SDST for porting to

● source de, installation instructions and “make”

● operating instructions, and other documentation,

the PGS should contain:

file

● test input and output data sets which test all paths in the code

● -t drivers, especially when the software is not “stand-alone”,
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2 Readability/Documentation

Efficient porting, integration, testing, documentation, and maintenance of code depends
heavily on being able to r=d and understand the code (including the documentation). The
code must be written and documented so m to be read, understood, and used by another
knowledgeable person or group of people in a different environment. Readability, or
understandability, is the most important criterion for successful implementation of MODIS
code.

2.1 Documentation

Proper software documentation covers a wide range of topics including theory, programmer’s
guide, user’s guide, etc. While all available code documentation should be provided to the
SDST, the present focus is on internal documentation of source code. ~

Comments are interspersed throughout a module, whereas documentation occurs at the
beginning of a module. Documentation is specific, and it should be revised to reflect
changes. Completeness and readability, not brevity, are the main considerations. For each
code module the documentation should contain, at a minimum, a standard prologue consisting
of the following:

●

●

●

●

●

●

●

●

●

a one-line header witi the module name and a short description,

a version line with the revision code and date,

the author, sponsor and institution originating the module,

the purpose of the module and instructions on its use,

a list of called functions and subroutines,

definition, description and unifi of the input, output and internal variables,

method used, if applicable,

references and credits,

notes and warnings (conscious design limitations).

MODISSDST
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Input variables should be given thorough and complete definitions and descriptions. Units,
type, dimensions, special cases, upper and lower limits, usage examples, default values, and
interrelations with other input variables shotid all be provided.

2.2 Declarations

Declarations and data statements should be placed just before the f~st executable statement of
the module.

2.3 Variable Names

AU variable names should be meaningful to the knowledg=ble reader. The use of short or
cryptic variable names should be avoided wherever possible. A variable name within a
computer program should have only one meaning within the context of that program, and
should be used for only one purpose. The use of Fortran or C language keywords as
variable names should be avoided.

2.4 Structure

me code should be adequately and logically blocked, commented and indented to clearly
show the sticture and logical flow. Comments should be uniformly set-off from the tie.
All transfers of control and destinations should be clmly annotated. A path must be defined
for every possible outcome of a logical decision. The level of nesting should be kept to a
minimum. Statement labels (if used) should occur in a clear md natural sequenu. There
should be only one statement per line.
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2.5 Modularity/Cohesiveness

Complex programs ~ generally be separated h a logical way into modties (subprograms)
each of which does a single task. When each module is mhesive, and the mupling between
modulm is loose, the tie becomes more understandabIe, more testable, more maintainable,
and more easily documented. The aim is to achieve a level of modularity which keeps the
individual modules cohesive and comprehensible while avoiding the cIutter of too many
relatively trivial modules. Avoid wmbining severalfunctionstogetherarbitrarily.Modules

shouldgenerallybe limitedin lengthto 1 or 2 pages.

mIS SDST
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3 Portability

Portability is of primary concern in the case of MODIS science code which is developed in
one environment and implemented for production prtissing in a different environment. The
degree of concern increases with the degr= of differenm between the two environments.

3.1 Language/Operating System

The best guideline to achieve portability is to adhere to standard FORTRAN or C, and avoid
the use of system-dependent features.

Many ~rtability problems are best avoided by specifying a small set of primitive operations
for ac~ssing the environment. Operating system dependencies are then confined to a small
number of pr-ures and functions, so the code can be movd to a UNIX system where the
primitives can be implemented.

3.2 Data Portability

Many portability problems can tise if care is not taken to design portable (machine-
independent) data sets. It is strongly recommended that the use of portable data formats be
investigated. Examples are the Network Common Data Form (NetCDF) and the ~erarchical
Data Format (HDF). Referen- for these formats are provided.

If a standard portable data format is not used, then ~ial ca,re must be taken in the design
of data sets which are to be ported to different environments. Floating point data, for
example, is often highly machine specific. Data sefi which contain integer or ASCII data
present the fewest portability problems as long m sufficient ancillary information is provided
regarding word lengths, byte ordering, and so on. Data sets with mixed data types such as
floating point, integer and character data present the greatest portability problems.

Each data set should have a header explaining the mntents, origin, format, etc. of the data
set.
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4 Testability

Test data and test results should be included with the delivery of the code and documentation
to the SDST. The porting and integration pruss is not mmplete until the code has been
su=ssfully mted on the TLCF. These tests must give results which are consistent with
testing done prior to delivery to the SDST.

4.1 Module Testing

Each module should be tested independently of the total program. The test should include
exercising every logid branch in each module, checking for possible failure, checking for
reasonableness of results, comparison of limiting cases with analytic solutions, comparison
with published r=ults where possible. Tests should also include cases of invalid or
implausible input variables, no matter how utiely it is that the module will be used
incorrectly. In the code, each error message should be kept together with its associated error
check.

4.2 Test Drivers

A comprehensive test driver will explore all of the branches of a program and mmpare
results with “corr=t answers” which are included in the driver code. A good test driver will
also “failure-test” the model by pushing it into regimes where trouble is expected. Good test
drivers, developed with good coding practices, are very helpful in testig, porting,

integrating, and maintaining code. Test drivers are recommended for MODIS scien= code
and they should be supplied to the SDST.
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5 Maintainability

Considering the duration of the MODIS mission, all code will be subject to maintenance
(chges, and updating). The maintenam pr=ss will be gr=tly simplified if the
recommendations addressed elsewhere in this document are applied in the design and
development of code.

MoDIS sDST
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ADDendix A: So~are Code Evaluation criteria

This list of software de evaluation criteria is provided as a suggested chwklist for de
review. Some of the items apply to more than one category.

R~dabilitv/Documentation

Does each module have the standard prologue?

Are definitions, descriptions and units given for all variables?

Are declarations and data statements placed after the prologue and before the first
exwutable statement?

Are variable names meaningful?

Do variable names avoid the use of language keywords?

Hm structured programming been utilized?

Is the code logically and adequately commented, blocked and indented to show
structure?

Are comments uniformly set-off from code?

Are W transfers of control and destinations annotated?

Is a path defined for every possible outcome of a logical dmision?

Is the level of nesting kept to a minimum?

If statement labels are used, do they occur in a clear and natural sequence?

Is there only one statement per line?

Is the program divided into cohesive and comprehensible modul~ of r~nable size?

A-1
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Portabili&

Is the software written in Standard FORTRAN or Standard C without extensions?

Are operating system dependencies limited to a small set of primitive operations?

Are mixed binary arrays of fixed and floating point numbers avoided?

Testabi.li~

Are test data and test results provided with the code?

Are limit checks performed to ensure that variable contents are within the expected
range of values?

Are input defaults explicitly tested?

Are errors and ~sociated error messages kept together?

Other Criteria

Callinz subroutines

Do arguments in call statements not contain arithmetic or logical expressions?

Does each module contain a single entry point and a single exit point?

Are shared variables communicated as arguments whenever practical to ensure
program modularity? (Min.irnize the use of COMMON and EQUIVALENCE.)

mIS SDST
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Error handlinz and Prevention

Are flagged/missing &ta values correctly excluded from calculations?

Is the code designed to handle errors and failures gracefully?

Are possibilities for infinite loops avoided?

Are stack overflow problems avoided?

Variables. constants & Parameters

Are constants defied? Are counters, variables and parameters initializti?

Are local variables within modules declared as static (type) where appropriate?

Are loop index pararne~rs and array subscripts expressed only m integer wnstants or
integer variables?
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Thin= that will Increase the Risks in Portin~ Code

General

Delays in the software delivery will increase the risk arising from schedule pressure on the
SDST.

Readability

Incrd risk of misinterpretation will result from:

● poorly written and poorly documented code,
● the use of cryptic or mtigless variable names,
● omitting the standard prologue,
● having Team Members and/or their programmers unavailable to answer questions.

Portability

Increased portability risk will result from:

● the use of non-standard FORTRAN or non-standard C,
● the use of machine specific language extensions or “tricks”,
● the use of machine dependent internal and external data sets,
● development of de on a type of machine to which the SDST does not have access.

Testabili@

Increased testability risk will result from:

● missing or inadequate test drivers, test data and/or test results,
● inadequately modd- code,

Owrabilitv

Increased operability risk will rmult from:

● requirements for human intemention,
● ex=sive use of COMMON and EQUIVALENCE,
c missing or inadequate error messages.
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